
A Pattern-Based Formalization of
Cloud-Based Elastic Systems

Schahram Dustdar∗, Alessio Gambi∗, Willibald Krenn† and Dejan Nickovic†
∗Vienna University of Technology, †Austrian Institute of Technology

Vienna, Austria

{name.surname}@tuwien.ac.at, {name.surname}@ait.ac.at

Abstract—Cloud-based elastic systems leverage cloud infras-
tructures to implement elasticity, the ability of computing systems
to dynamically adjust their capacity by changing the allocation
of resources in response to fluctuating workloads. The runtime
behavior of elastic systems is the result of an intricate interplay
of many factors that include the input workload, the elasticity
logic determining the resources allocation, and the technology
of the underlying cloud. This makes elastic systems difficult to
design and hard to specify.

In this paper we propose a novel formalization of elasticity and
related concepts that is based on timed patterns written using
timed regular expressions. Timed regular expressions naturally
deal with dense-time signals, and timed patterns allow us to
intuitively describe relevant changes in those signals. This, in
turn, enables us to directly characterize elasticity as relation
between relevant changes in the input workload and in the
resources allocation signals. We firstly characterize the relevant
changes by means of timed patterns, and then we define desired
and undesired behaviors of cloud-based elastic systems in terms
of the occurrence of such patterns over an observation period.

I. INTRODUCTION

The advent of cloud computing gave raise to a new breed

of self-adaptive systems called cloud-based elastic systems.

Cloud-based elastic systems leverage the ability of cloud

platforms to deliver computing resources on-demand as remote

services for implementing elasticity, the ability to dynamically

scale by acquiring and releasing computing resources.

By dynamically acting upon resources allocation elasticity

can control the available system capacity at run time. Ap-

plication providers exploit this fact to avoid under- and over-

provisioning of their cloud-based systems when the workloads

entering their systems fluctuate. Indeed application providers

implement elastic systems with the aim of maintaining consis-

tent levels of service while minimizing the running costs by

adjusting the provided capacity to match the capacity required

by the fluctuating workloads.

The runtime behavior of cloud-based elastic systems results

from an intricate interplay of several factors that makes the

design of elastic systems very challenging: the input workload

that fluctuates; the cloud platform that delivers the computing

resources; the way the applications deployed on the cloud

adapt; and, the logic that decides on the allocation of resources.

If not properly designed elasticity might turn into a double-

edged sword and possibly cause undesired emergent behaviors,

such as instability and resource thrashing, that might jeopar-

dize the system dependability and the business of application

owners [1]. This calls for systematic methodologies to develop

elastic systems as well as approaches that allow application

providers to precisely characterize the desired behaviors of

their elastic systems.

In this paper, we address the latter point and propose a novel

formalization of the behavior of cloud-based elastic systems

based on timed regular expressions. Timed regular expressions

naturally deal with both continuos and integer dense-time

signals and allow application providers to directly express,

as timed patterns, the relevant aspects of the evolution of

systems variables, such as input workload, system performance

and resources allocation. This way, application providers can

formalize elasticity more intuitively by describing how the

various signals, i.e., the system variables, should evolve and

co-evolve. For example, using timed regular expressions it

comes natural to describe what constitute a relevant increase

of the workload, e.g, in terms of its first derivative, and

correlate such an event to an expected increase of the resources

allocation.

Our work advances the current state of research by re-

formulating common elasticity related properties using timed

regular expression, and by introducing additional properties to

describe the expected functioning of the inner components that

comprise cloud-based elastic systems. In other words, instead

of limiting the scope of our formalization at the outer system
level, we whiten the model of cloud-based elastic systems and

formalize their behavior at component integration level.

The rest of the paper is organized as follows. Section II

introduces the reference architecture for cloud-based elastic

systems. Section III summarizes the main elements of timed

regular expressions. Section IV presents our approach to

formalize elasticity using patterns written as timed regular

expressions. Section V extends the proposed formalization

to include threshold-based elastic controllers. Section VI dis-

cusses the related work, and Section VII concludes the paper.

II. CLOUD-BASED ELASTIC SYSTEMS

The key aspect of elastic systems is their ability to self-adapt

at run time in response to changes in the operating conditions,

such as seasonal fluctuations of the number of input requests,

by suitably stretching and shrinking.

Cloud-based elastic systems are the most common imple-

mentation of elastic systems. They leverage the ability of the

cloud infrastructures to dynamically allocate and deallocate

2015 IEEE/ACM 7th International Workshop on Principles of Engineering Service-Oriented and Cloud Systems

2156-793X/15 $31.00 © 2015 IEEE

DOI 10.1109/PESOS.2015.13

31

Public
Interface

Cloud
Interface

Controlled System

End-Users

resources
allocation

resources

r

input workload

x

system load

y

control signal

c

Elasticity
Controller

Cloud

Fig. 1. Reference architecture of cloud-based elastic systems

computing resources to stretch and shrink. For example, when

the workload increases the allocated computing resources

might saturate and in order to avoid degradation of the Quality

of Service (QoS) elastic systems acquire additional resources

over which distribute the load. Hence, the elastic systems scale
up. When the incoming workload decreases and the allocated

computing resources become under-utilized, the elastic system

will reduce costs by consolidating the system load on a portion

of the allocated resources and release the unused ones. The

elastic systems scale down. This way, elasticity is a means to

avoid under- and over-provisioning, and allows elastic systems

to maintain a suitable QoS while minimizing the running costs.

This, in turn, contributes to the satisfaction of both end-users

and application providers.

As many other self-adaptive systems, cloud-based elastic

systems implement a closed-loop architecture [2]. Figure 1 de-

picts the reference architecture for cloud-based elastic systems,

where an elasticity controller supervises a controlled system,

i.e., the actual system that implements the business logic of the

application. End-users access the controlled system through

its public interface and generate the input workload – x. The

controlled system consists of a set of virtual machines that

are deployed onto a cloud and cooperate to respond to end-

user requests. The controlled system also implements the logic

that adjusts the capacity of the system when the allocation of

resources changes, which is required to enable elasticity. The

elasticity controller monitors the operating parameters of the

controlled system (e.g., the system load – y) and periodically

determines the control actions to be executed to perform

adaptation (cf. the control signal – c). Notice that signal y
is multi-dimensional and might include x.

Based on the control signal the cloud dynamically instanti-

ate and terminate virtual machines. Notice that the process

of instantiating/terminating virtual machines might take a

non-negligible amount of time. Finally, the cloud tracks the

total resource usage of the controlled system over time (cf.

resources – r) and bills the application provider for the cost

of running the elastic system.

III. BASICS OF TIMED REGULAR EXPRESSIONS

Timed regular expressions are an extension of traditional

regular expressions that enables specifying real-time patterns

over dense-time signals [3]. By means of timed regular ex-

pressions, we can provide formal specifications that concisely

characterize the behavior of systems in terms of co-evolving

mixed, integer and continuous valued signals and instanta-

neous events.

Each timed regular expression captures a well defined and

localized evolution of a set of signals into a pattern. Basic

patterns can be flexibly composed to obtain bigger patterns

that describe complex situations by means of traditional op-

erators like concatenation (·), repetition (∗), union (∪) and

intersection (∩).

xvalue

0
time

Fig. 2. The ramp up pattern

We illustrate the specification of patterns over dense-time

signals with the following pedagogical example. Consider a

real-valued signal x that at some point in time ramps up as

shown in Figure 2. Intuitively, this behavior can be captured by

a composed pattern that identifies where x changes, describes

each of the segments comprising x, and then concatenates the

segments. In particular, before the ramp begins the value of

x must be stable and equal to 0, after the ramp the value of

x must be at least equals to a target (positive) value D, and

during the ramp the value of x must be always between 0 and

D while non-monotonically increasing. Furthermore, the ramp

must have a bounded duration T .

We match timed regular expressions on finite signals of

duration d. We consider Boolean, integer and real valued

signals. The basic block in a timed regular expression is

a propositional term p, that is either a Boolean variable b,
a predicate θ(x) over an integer or a real variable x, or

their negation ¬b and ¬θ(x) respectively.1 The syntax of

timed regular expressions is defined according to the following

grammar:

ϕ := ε | p | ↑ p | ϕ1 · ϕ2 | ϕ1 ∪ ϕ2 | ϕ1 ∩ ϕ2 | ϕ∗ | 〈ϕ〉J
where p is a propositional term and J is a rational non-empty

interval. Timed regular expressions contain all the classical

elements of regular expressions, such as the empty word ε, the

1We will abuse notation and also directly use ¬p to refer to a propositional
term that is the negation of a Boolean variable or a predicate.

32

propositional term p, the traditional set-theoretic operators, and

specific operators, like the timed restriction operation 〈ϕ〉J ,

which allows us to reason about patterns of length determined

by the interval J . In addition, we allow rising events ↑ of

propositional terms (↑ p).

Intuitively, the semantics of a timed regular expression relate

an expression ϕ to the signal segments that match it. For

instance, only empty signal segments match ε, while a signal

segment matches p (¬p) if p is true (false) throughout the

segment. The rising event ↑ p is matched only by singular

points in the signal at which p goes from false to true value. A

signal segment matches 〈ϕ〉J if it matches ϕ and the duration

of the segment is contained in the interval J . All the other

operators behave as in the classical regular expressions.

In the following we use the notation ◦ni=1ϕi as syntactic

sugar for ϕ1 · ϕ2 · · ·ϕn. The fall event ↓ p can be obtained

as syntactic sugar ↑ ¬p, the propositional constant true 	 as

p∪¬p and ⊥ as p∩¬p. Positive repetition is written ϕ+ and

is equivalent to ϕ · ϕ∗.

Given the syntax of timed regular expressions we can

formalize the ramp up pattern:

(x = 0) · 〈x ∈ (0, D) ∩ ẋ ≥ 0〉≤T · (x ≥ D)

where ẋ denotes the first derivative of x.2

We derive the specifications of systems under development

by refining the timed patterns, providing values to all the

parameters (i.e., D and T in the example), and introducing

additional constraints about the occurrence (or absence) of the

timed patterns. Timed pattern matching [4] is the problem of

effectively computing all the segments in a dense-time signal

that match a timed regular expression. Computing all such

segments enables versatile analysis of real-time behaviors. For

instance, one can detect and visualize the presence or the

absence of desired or undesired behaviors, count the number

of times timed patterns occur in the signal, derive the durations

of the matched segments, etc. This approach provides richer

analysis of real-time behaviors than the classical monitoring

based on temporal logic [5], [6].

Dense-time signals, as well as instantaneous events, nat-

urally arise in cloud-based elastic systems where monitored

variables such as input workload, performance, reliability

metrics and resources allocation can be described as signals,

while the life-cycle of virtual machines can modeled in terms

of instantaneous events [6]. Therefore, we argue that timed

regular expressions are a suitable formalism for describing the

behavior of such systems and characterizing their elasticity. In

fact, timed regular expressions naturally deal with signals and

events, and, as we illustrate in the next sections, enable the

designers to decompose complex elasticity properties into a set

of smaller, more intuitive, timed patterns that when combined

can describe the intended adaptations of the elastic systems in

the face of the ever-changing operating conditions.

2We assume that the derivative ẋ can be computed or approximated from
x. Notice that this formula is rather abstract and allows for many different
“shapes” of the ramp up, which are not limited to the linear case depicted in
Figure 2.

IV. A PATTERN-BASED SPECIFICATION OF ELASTICITY

Elastic systems dynamically allocate resources in response

to the changes in the input workload. In the case of cloud-

based elastic systems, this adaptation results either in an in-

crease or a decrease of the computing capacity, by allocation or

release of the resources. While the decisions about allocation

and de-allocation of resources come from the elastic controller,

the elasticity properties of the system can be observed at the

system interface, as relations between the input workload x
and the amount of resources allocated r. Reasoning about

cloud-based elastic systems at this level of abstraction allows

us to specify and observe both desired and undesired elasticity

related properties at the system level, without the need to refer

to the actual implementation of its components.

In this paper, we propose to capture relevant variations of

x and r by means of timed patterns, compose the patterns to

describe how r should change given that x is evolving, and

eventually derive a set of formal specifications that capture

the expected elasticity related properties in terms of the

occurrence of the corresponding patterns in the observation

period. Intuitively, universal properties must match across

the whole observation period, and expected properties must

match the intended amount of times and possibly for the

indented duration. Consequently, undesired properties, which

are a type of expected properties, must match no times over

the observation period, meaning that their occurrence is never

observed. For example, elastic systems should always adapt

as within a given time after the input workload changes

enough; conversely, the systems should never adapt if the input

workload does not change.

We decide to use a compositional approach based on timed

patterns over dense-time signals for several reasons. Timed

patterns have localized nature that makes them intuitive. In

fact, the patterns focus on describing only specific segments of

signals, for example where a signal increases over a threshold;

nevertheless, they can span across wide intervals, theoreti-

cally unbounded. Timed patterns are composable, concise and

declarative. Complex patterns can be formed by combining

simpler patterns using for example sequential operations and

repetitions. This enables us to describe complex situations

that possibly involve multiple signals in high-level terms by

abstracting several low level details. Furthermore, patterns

promote reuse. For example, with timed patterns is easy to

write a specification that prohibits an elastic system to scale

up more than two times in each minute. We can achieve this

by firstly describing a generic scale up in terms of increase of

the resources allocation; concatenating two consecutive scale

up patterns and restricting them to appear within a minute;

and, finally imposing that such composed patterns must never

be matched.

In the remaining of this section, we illustrate our pattern-

based formalization of elasticity by presenting the formal-

ization of some of the properties originally introduced by

Bersani and coauthors in [6]. We model the input workload

x as a continuous-time real-valued signal and the resource

33

allocation r as a piecewise-constant, non-negative and integer-

valued signal. In particular, we require that r is bounded by

a minimal and a maximal amount of resources, rmin = min
and rmax = max, such that max ≥ min. We denote by ri,
where i ∈ [min,max], the amount i of resources. Notice that

bounding of r is a common strategy that application providers

adopt to guarantee that their systems have sufficient resources

to operate and an upper limit on the amount of resources

concurrently in use. We capture this bounded resources
property with the following br pattern expressed on r:

br := 〈r ≥ rmin ∩ r ≤ rmax〉>0

To formalize common desirable and undesirable patterns that

characterize elasticity in cloud-based systems, we partition the

input workload into rmax − rmin + 1 possible value ranges

Imin, . . . , Imax and associate to each value range Ii the expected

amount of allocated resources ri. Figure 3 illustrates this

strategy.

r4

r1
I1

I2

I3

I4

x

r2

r

r3

Fig. 3. Partitions of input workload x and their relation to the allocated
resources r.

Elastic systems adapt by allocating resources, i.e., they

scale up, and deallocating resource, i.e., they scale down;

therefore, we characterize the possible adaptations of elastic

systems by introducing patterns that describe the increase and,

respectively, the decrease of r.

In details, we define a scale up between any two amounts

of resources, ri and rj such that rmin ≤ ri < rj ≤ rmax, as

a monotonically increase in r. Additionally, we require that

scaling up has a maximum duration of tsu. We characterize

the pattern of scaling up from ri to rj , and its arbitrary level

scale-up generalization as follows:

su(i, j) := (r = ri) · 〈◦j−1
k=i+1(r = rk)

∗〉≤tsu · (r = rj)
su :=

⋃
min≤i<j≤max su(i, j)

We omit the formal characterization of scale-down patterns

as it is symmetric to the scale up case. We define su(i, ∗)
and sd(i, ∗) as syntactic sugar for

⋃
min≤i<j≤max su(i, j)

and
⋃

min≤k<i≤max sd(i, k). Similarly, we define su(∗, j) and

sd(∗, j).
The mapping between x and r conveniently captures the

requirements about the intended resources allocation with

respect to the input workload that the implementation of elastic

cloud-based systems must provide. Given this mapping we

characterize a system to be elastic if whenever the value of

the input workload is continuously within a partition Ii for

some time tw, then the amount of allocated resources becomes

equal to ri within a time tr. Figure 4 exemplifies this expected
elasticity concept that we formalize as el pattern as follows:

el(i) := (x �∈ Ii ∩ r �= ri) · 〈x ∈ Ii〉tw ·
〈su(∗, i) ∪ sd(∗, i)〉≤tr

el :=
⋃

min≤i≤max el(i)

tr

I1

I2

I3

I4

x

r

r4

r3

r2

r1

tw

Fig. 4. Example of expected elasticity - illustration of el(2).

The el pattern allows us to capture all the segments in x
and r that satisfy the expected elasticity property. However,

it would be also useful to capture those segments where

such elasticity property is violated, for example, to identify

if critical situations and emergent behaviors arise [1].

In general, the expected elasticity property is violated when

x has continuously its value in Ii for tw time, but the

amount of allocated resources fails to reach ri within tr time.

We formalize this failed expected elasticity property as nel
pattern as follows:

nel(i) := (x �∈ Ii ∩ r �= ri) · 〈x ∈ Ii〉tw · 〈r �= ri〉>tr

nel :=
⋃

min≤i≤max nel(i)

The nel pattern is rather abstract and can be used to identify

all the possible cases where elastic systems do not adapt as

expected. Therefore, in order to identify more specific types

of violation of the elasticity condition, such as plasticity and

inelasticity [7], we introduce additional patterns that refine nel.
Plasticity is defined as the inability of the system that

operates at a given time with ri resources to adapt back to ri
resources after scaling up or down [8]. We notice that a plastic

system can be described as an elasticity system that takes

infinite time to complete an adaptation; hence, we formalize

this behavior with the following pl patterns:

plsu(i) := su(i, ∗) · 〈x ∈ Ii〉tw · 〈r > ri〉>tr

plsd(i) := sd(i, ∗) · 〈x ∈ Ii〉tw · 〈r < ri〉>tr

pl(i) := plsu(i) ∪ plsd(i)
pl :=

⋃
min≤i≤max pl(i)

Notice that we characterize the behavior of plastic systems

by composing patterns that separately describe the plastic case

after a scale up (plsu) and the case after a scale down (plsd).

34

Inelasticity is a stronger form of violation of the elasticity

property and is defined as the total lack of system adaption

after variations of the input workload that would require either

to scale up or to scale down. We formalize inelasticity with the

inel pattern that correlates the input workload and the resource

signals as follows:

inel(i) := (r = ri ∩ x ∈ Ii) · 〈x �∈ Ii〉tw · 〈r = ri〉>tr

inel :=
⋃

min≤i≤max inel(i)

As discussed in [6], elasticity does not prevent cloud-

based elastic systems to exhibit behaviors that, despite being

formally correct, are undesired from the application provider

point of view. For examples behaviors such as oscillations and

resource thrashing might be valid manifestations of elasticity;

nevertheless, they should be identified and possibly corrected.

We say that a cloud-based elastic system oscillates when in

the face of a stable input workload the system still triggers

(possibly multiple) changes in the allocation of resources. For

example, oscillations can happen when the value of the input

workload signal is near the boundary between two consecutive

partitions and although its rate of change is small, it regularly

crosses the boundary. Assuming to have access to the signal

ẋ, which can be easily computed by pre-processing x, we

formalize oscillations with the osc patterns by bounding the

value of ẋ over the time tw by a tolerance ε and still observing

oscillations in the amount of allocated resources within some

time bound to:

osc(i) := (r = ri) · 〈ẋ ∈ (−ε, ε)〉tw ·
〈(· r �= ri · r = ri)

+〉≤to

osc :=
⋃

min≤i≤max osc(i)

Resource thrashing can be intuitively described as a spe-

cial type of oscillation that consists in opposite adaptations

occurring in a short period of time that we denote by trt. We

formalize resource thrashing with rt patterns by elaborating

on the scaling patterns:

rtsu→sd(i) := 〈su(∗, i) · sd(i, ∗)〉≤trt

rtsd→su(i) := 〈sd(∗, i) · su(i, ∗)〉≤trt

rt :=
⋃

min≤i≤max(rtsu→sd(i) ∪ rtsd→su(i))

We now illustrate how the pattern-based specification and

matching of property work on the example depicted in Fig-

ure 5. The figure depicts the case of a fluctuating input

workload and the corresponding observed elastic adaptations.

Consider first the case tw = 0.5 and tr = 0.25. In this

case, the expected elasticity pattern el is matched twice in

the behavior. This is highlighted by the segments s1 and s2 in

Figure 5. More precisely, the first match corresponds to pattern

el(2), while the second one corresponds to el(1). Under this

settings, there are no matches for patterns el(3) and el(4). In

fact, the input workload x remains in the region I3 less than

0.5 time, and hence does not trigger the scaling up of the

resource allocation to r3. If we now change tw to be equal

to 0.25, we obtain different signal segments, namely s3, s4
and s5, that match the failed expected elasticity nel. This is

due to the fact that r fails to adapt altogether to the expected

allocation of resources (s3) and fails to adapt in the requested

time frame (s4 and s5).

s3

s4 s5

s2s1

654321

r1

r2

r3

I1

I3

I2

I4

x

r

r4

Fig. 5. Example of pattern-based matching of elasticity properties.

The timed patterns presented in this section enable the

characterization of elasticity of cloud-based systems in a

black-box fashion by elaborating on the input workload,

its variations and the resulting system adaptations; however,

leveraging these patterns we can formally specify only the

outer behavior of cloud-based elastic systems without being

able to link the observed behavior to specific components

inside them. In the next section we show how we can “open-

the-box” and use timed patterns to characterize also the

behavior of the components that comprise elastic cloud-based

systems. Specifications at the level of component integration

allows application providers to link the implementation of

systems with their externally observable behavior, therefore,

better characterizing the achieved elasticity. We derive such

component level specifications by introducing new signals and

patterns, and by refining the timed patterns that characterize

elasticity.

V. MODELING THRESHOLD-BASED ELASTIC SYSTEMS

In this section we consider a particular type of elastic

systems, namely threshold-based elasticity systems [9]. And

we provide a formalization of the main properties of their

implementation of elastic controllers (see Figure 6). We con-

sider threshold-based elasticity controllers because of their

intuitiveness and because they are the “de facto” standard

solution for implementing elastic systems in the industry [10].

Threshold-based elasticity controllers monitor a target met-

ric that captures the current load of the system, for example

the average CPU usage in the past minute, and produce as

output the control signal that drives the resources allocation. To

compute the control signal these controllers periodically, with

control period P , trigger a simple elasticity logic that demands

the acquisition or the release of computing resources when the

value of the target metric exceeds respectively the upper or

the lower thresholds configured by the application provider.

35

Elasticity Controller

Clock

Thresholds Stability Filter

system load

y

control signal

c

internal control signal

b

clock signal

Control period

Stability periodUpper, lower thresholds

Configurations

Fig. 6. Details of the threshold-based elasticity controller

Elasticity controllers might decide to temporary disable the

triggering of the elasticity logic to avoid to overexcite the

controlled systems. This has the effect of filtering away some

control actions, thus smoothing the control signal.

We model threshold-based elasticity controllers in terms

of three components: the Clock, which generates the peri-

odic clock signal – clk and triggers the elasticity logic; the

Thresholds component, which samples the system load – y
at the rising edges of the clock and computes the internal
control signal – b; and, the Stability Filter, which smoothens

the internal control signal to produce the actual control signal –

c. We model the system load as continuous and real-valued

signal, and we model the control signals (b and c) as piecewise-

constant and integer-valued signals.

We now characterize a number of patterns that are expected

to be seen in threshold-based elasticity controllers. We first

specify the scaling up pattern in general terms, and then, we

provide refinements that account for the possible policies that

elasticity controllers can implement for scaling up and down.

We denote such scaling policies as SUp and SDp. Note that

the scaling up and down patterns are symmetric; therefore we

left out from the presentation the scaling down patterns.

Intuitively, a scale up is triggered when the system load

crosses the upper bound threshold (denoted as UB) and results

in a demand for acquiring additional resources. We capture

this with the threshold-based scale up pattern (tbSU). tbSU
requires that when the value of the signal y at a clock rising

edge (↑ clk) is above the threshold UB, then the value of the

internal control signal b increases according to the policy SUp:

tbSU :=
⋃

min≤i≤max((b = ri)·
(↑ clk ∩ y > UB ∩ SUp))

In its most general form, a valid scale up consists in

allocating any amount rj of resources that is greater than the

current amount ri and that is bounded by rmax. We formalize

this concept with the SUpgen pattern as follows.

SUpgen := b ≥ min(rmax, ri + 1)

In practice however, application providers want to enforce

a more precise behavior on their elastic systems; hence, they

provide different implementations of the scaling policy [11].

A widely used scaling policy consists in allocating (resp.

deallocating) a fixed amount of resources that is always equal

to some pre-defined parameter n. 3 We call this policy linear
scaling. We formalize the functioning of the linear policy with

the SUplin pattern.

SUplin := b = min(rmax, ri + n)

The linear scaling policy is very intuitive, however, it is

inflexible and might limit the effectiveness of using elastic

systems. In fact, depending on how the parameter n is chosen,

the elastic systems might react very slowly (e.g., small n)

or they might over react (e.g., big n). An alternative im-

plementation of scaling policy, which we call proportional
scaling, computes the next amount of allocated resources as

a value that is proportional to the load y modulo the current

amount of resource ri and the thresholds UB. We formalize

the proportional scaling policy with the SUpprop pattern.

SUpprop := b = min(rmax, � ri·yUB �)
We finally formalize the properties related to the stability

filter, which smoothens the internal control signal b into

the actual control signal c. The filter can be configured by

specifying a stability period S that determines the extent of

the smoothing. Without loss of generality, we assume that the

stability period is expressed as a multiple m of the control

period P , hence S = mP .

Given the stability period, the filter computes the value of c
periodically at the rising edges of the clock and considers the

values of b and c in the previous m control periods as follows:

if, after c increased (resp. decreased), b was consistently

greater or equal to c (resp. smaller or equal to c) for the whole

stability period, then the filter enables the signal c to increase

(resp. decrease); otherwise, the filter smoothens the signal and

maintains the current value of signal c.
Since the stability period lasts for multiple control periods,

elasticity controllers observe the system load y several times

before acting. If the load intensity varies, the controllers adopt

the conservative strategy to scale the system to cope with the

maximal observed load variation. In other words, assume that

c was equal to some ri just before the rising edge of the clock;

the value c is the result of a scale up, a scale down or a no-

scale operation. At the rising edge of clock c is equal to some

rj such that:

• rj < ri if b was always smaller or equal to ri throughout

the last m sampling periods and rj was the smallest value

that b reached during that time;

• rj > ri if b was always greater or equal to ri throughout

the last m sampling periods and rj was the largest value

that b reached during that time;

3See for example the AutoScaler policy suggested by Amazon:
http://docs.aws.amazon.com/AutoScaling/latest/GettingStartedGuide/as-gsg.
pdf

36

• rj = ri otherwise.

We formalize these stability properties for the scale up

operation with the SFsu pattern.

SFsu(i, j) := 〈(· b = rj ·)∩
(ri ≤ b ≤ rj) ∩ (· c = ri)〉mP ·
(↑ clk ∩ c = rj)

SFsu :=
⋃

min≤i<j≤max SFsu(i, j)

The stability patterns for the two other cases are similar,

therefore we omit them from the exposition.

VI. RELATED WORK

In this paper, we propose a novel formalization of the

concept of elasticity in the cloud computing domain. This work

complements the other proposals for capturing, measuring,

modeling and formalizing elasticity found in literature.

Dustdar et al. [12] introduce the main principles of multi-

dimensional elasticity and describe their application in the con-

text of elastic processes. The authors characterize elasticity as

multi-dimensional property that describes the various aspects

of systems adaptation by correlating different system qualities.

In this paper, we adopt a similar philosophy and characterize

elasticity as a property that relates input workload, system

load, control signal and resource allocation.

In the context of cloud computing, Islam et al. [1] provide

a quantitative characterization of elasticity from the point of

view of the application providers using the cloud. The authors

define elasticity in terms of financial losses caused by under-

provisioning and unnecessarily costs due to over-provisioning.

Herbst et al. [13] refine the work by Islam and co-authors

and characterize elasticity in terms of speed and precision

of adaptation, key aspects of dynamic resources allocation.

Similarly to these work, we share the main goal of characterize

elasticity in quantitative terms; however, differently from them,

we aim to provide a precise and formal definition elasticity.

Towards this end, Bersani et al. [6] present a categorization

of the most relevant elasticity properties and propose their

initial formalization by means of the CLTLt(D) temporal

logic. In this work, we follow the same categorization, but use

a different formalism to model elasticity and related properties.

The difference between the satisfaction relation in temporal

logics such as CLTLt(D) and matching semantics of (timed)

regular expressions makes these two classes of formalisms

complementary. The satisfaction relation of CLTLt(D) is de-

fined relative to single time points, making the temporal logic

a good specification language for monitoring applications. On

the other hand, a timed regular expression match is defined

relative to a pair of points, denoting the start and the end times

of successful matches. It follows that timed regular expressions

can be naturally used to extract relevant patterns from traces

and use them to measure and learn different parameters of the

system. Finally, we note that in this paper, we also move a

step forward by providing specification of elastic systems at

the component integration level.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have shown a formalization of cloud-

based elastic systems based on timed regular expressions and

illustrated how timed regular expression can be used to specify

the outer behavior of elastic systems, as well as their behavior

at the component integration. In particular, we have formalized

the behavior of threshold-based elastic controllers, that are the

most widely adopted implementation of elastic systems.
Our formalization fosters the use of automated verification

tools to monitor the behavior of elastic systems over finite

observation periods. This work also enables synthesis of

controllers from the specifications and inference of timed

patterns from existing controllers. Currently we are working

on the first point by extending the implementation from [4] to

accommodate the specific needs of automated timed pattern

matching for elasticity. For the future, we plan to extend

the formalism of timed regular expressions by introducing

local variables and measurements. Local variables can capture

the state of the system, and their use might simplify the

formulation of several elasticity patterns, like su, sd and el.
Measurements taken on the matched patterns, instead, will

allow us to elegantly introduce quantitative aspects inside

the specifications and include constraints about the quality of

elastic system adaptation.

REFERENCES

[1] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a consumer can measure
elasticity for cloud platforms,” in Proc. of the Intl. Conf. on Performance
Engineering, ser. ICPE ’12, 2012, pp. 85–96.

[2] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. M. Kienle,
M. Litoiu, H. A. Müller, M. Pezzè, and M. Shaw, Engineering Self-
Adaptive Systems through Feedback Loops. Springer Verlag, 2009.

[3] E. Asaring, P. Caspi, and O. Maler, “Timed regular expressions,” Journal
of the ACM, vol. 49, no. 2, pp. 172–206, Mar. 2002.

[4] D. Ulus, T. Ferrère, E. Asarin, and O. Maler, “Timed pattern matching,”
in Formal Modeling and Analysis of Timed Systems, ser. Lecture Notes
in Computer Science. Springer International Publishing, 2014, vol.
8711, pp. 222–236.

[5] O. Maler and D. Nickovic, “Monitoring properties of analog and mixed-
signal circuits,” STTT, vol. 15, no. 3, pp. 247–268, 2013.

[6] M. M. Bersani, D. Bianculli, S. Dustdar, A. Gambi, C. Ghezzi, and
S. Krstic, “Towards the formalization of properties of cloud-based elastic
systems.” in Proc. of the Intl. Work. on Principles of Engineering
Service-Oriented and Cloud Systems, ser. PESOS ’14, 2014, pp. 38–
47.

[7] A. Gambi, W. Hummer, H. L. Truong, and S. Dustdar, “Testing elastic
computing systems,” IEEE Internet Computing, vol. 17, no. 6, pp. 76–
82, Nov 2013.

[8] A. Gambi, A. Filieri, and S. Dustdar, “Iterative test suites refinement for
elastic computing systems,” in Proc. of the Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE ’13, 2013, pp. 635–638.

[9] A. Gambi, G. Toffetti, and M. Pezzé, Assurance of Self-adaptive
Controllers for the Cloud, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, vol. 7740, pp. 311–339.

[10] G. Galante and L. de Bona, “A survey on cloud computing elasticity,” in
Proc. of the Intl. Conf. on Utility and Cloud Computing, ser. UCC ’12,
Nov 2012, pp. 263–270.

[11] T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559–592, 2014.

[12] S. Dustdar, Y. Guo, B. Satzger, and H. L. Truong, “Principles of elastic
processes,” IEEE Internet Computing, vol. 15, no. 5, pp. 66–71, Sept
2011.

[13] N. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud computing:
What it is, and what it is not,” in Proc. of the Intl. Conf. on Autonomic
Computing, ser. ICAC ’13, 2013, pp. 23–27.

37

